
Mechanization of Erlang’s Success Typing:

Informal Proof of Reverse Progress

Svetlana Semenova

December 2023

1 Introduction

Applications like telecommunications, banking, and gaming require that systems
are always operational. However, since crashes are unavoidable in practice, these
systems are built in a distributive way: many processes work together, and the
failure of one will not collapse the whole. Oftentimes, these distributed systems
are written in languages designed for them, such as Erlang, a dynamically typed,
functional programming language [1].

For most programming languages, their type systems—sets of rules that
restrict what programs are valid in a language—make it impossible for programs
to “go wrong” if they pass the type checker. In essence, most languages adhere
to the principle that “if a program is well-typed, it will not go wrong.” All
languages have different definitions of what it means to go wrong, allowing some
classes of errors and not others, but they all have some sort of crash prevention
within their design.

Unlike most languages, Erlang is designed with a “Let It Crash” coding
philosophy. Given Erlang applications generate hundreds, if not thousands, of
processes, it is cheaper to let processes crash, communicate that failure to other
parts of the system, and restart, rather than recover a broken process or prevent
the crash in the first place, as is the standard in most other languages. Crashing
becomes the default, rather than an exceptional case.

This philosophy is exemplified by Erlang syntax allowing you to write func-
tions that always crash, no matter what the input is, such as the following:

add2(X) when is_list(X) -> X + 2.

When add2 is called on an input, the program will check if the input satisfies
the guard—the is_list(X) in the expression. If add2 is called with a list, it will
satisfy the guard but crash on the addition operation; if it is called with anything
other than a list, it will crash from not satisfying any guard. Despite this, this
statement is syntactically correct and will compile. In Erlang, syntactically valid
programs can, and often do, go wrong.

1



Researchers, seeing how critical systems are built in Erlang without safety
checks, have aimed to add type systems into Erlang to make programs safer—all
of which have never been adopted due to this fundamental philosophical differ-
ence. No Erlang programmer, who subscribes to the “Let It Crash” philosophy,
wants to use a tool that restricts expressiveness and reduces crashes. A soft
typing tool, one that gives warning when type clashes could occur rather than
halt compilation, has seen wider adoption [2]. And while this was more widely
adopted than previous iterations, it gave too many warnings to be useful.

In response, Lindahl et. al. [3] proposed creating a type system where only
type clashes that provably always crash are reported and found. The team
implemented Dialyzer, a tool that only reports provable type clashes. Dialyzer
became an indispensable part of most Erlang workflows, and its popularity
inspired the authors to formalize the type system Dialyzer implicitly worked
with: success typing.

In a more traditional type system, if a function f has type (α) → β, then any
value in (α) will reduce to a value in β without crashing. This means that if a
function cannot be assigned such a type, there exists some value in (α) that will
not reduce to a value in β. Success typing has a converse definition: if a function
f has a success typing (α) → β, then whenever an input reduces successfully
to an output in β, the input must be of type (α). This states nothing about
whether all values of (α) will reduce. If a function has no success typing, that
means there is no input that can reduce successfully. In essence, the philosophy
of success typing is that “if a program is ill-typed, it necessarily goes wrong.”
This also means that if a program is well-typed, it has the potential to succeed,
even if it can also fail.

Lindahl et. al.’s work enumerated the typing rules and constraint solving
algorithms that were implemented in Dialyzer and provided an informal proof
of termination of the constraint solving algorithm, though the paper did not
address whether any other common properties of type systems hold, such as
progress, preservation, type soundness, determinism, and normalizability. As
they are typically stated for other type systems, these properties cannot hold
in a success typing system—nearly all metatheory that PL researchers typically
draw from falls apart in the face of success typing’s converse setup.

The project I began this semester aims to accomplish two goals: mechanize
and formalize the type system in a proof assistant, specifically Coq, and create a
theoretical foundation for it, either by modifying existing property statements or
finding new properties. I will be building off Bereczky et. al., which mechanized
core-Erlang and mini-Erlang [4]. This paper has a progress update in the form
of specifying the Erlang constructs I’ll be working with and an informal proof
of reverse progress.

2



2 Specification

2.1 Specification of Mini-Erlang

This specification of the mini-Erlang is taken and modified from Lindahl et. al.

e ::= x

| literals
| (e1, . . . , en)
| fun(x1, . . . , xn) → e

| let x = e1 in e2

| letrec x = f in e

| case e of (p1 when g1 → b1);

. . . ; (pn when gn → bn) end

p ::= x

| literals
| (p1, . . . , pn)

g ::= g1 and g2

| x1 = x2

| true
| is atom(x) . . .

Terms are composed of variables, literal, tuples, functions, let statements, and
case statements. Case statements have patterns and guards; from Lindahl et.
al., “a term t matches a pattern p if the variables in p can be bound so that p
represents a term syntactically identical to t ;” and guards are for here restricted
to conjunctions of simple constraints on equality and whether variables are of
certain literal types.

The most glaring omission of this current set up is the omission of mutual
recursion in letrec. Adding that into expressions would constitute the replacing
the current letrec rule with the following:

| letrec x1 = f1, . . . xn = fn in e

This would add mutual recursion into the language. However, for the sake of
temporary simplicity with the proof-of-concept informal proofs, I am only going
to focus on simple recursion, rather than the full mutual recursion.

3



2.2 Specification of Success Types

The success typing system is taken from Lindahl et. al. with some modification.

T ::= V

| none()
| any()
| prim()

| (T1, . . . , Tn)

| (T1, . . . , Tn) → T

| T1 ∪ T2

C ::= T1 ⊆ T2

| C1 ∧ . . . ∧ Cn

| C1 ∨ . . . ∨ Cn

The types are mostly standard, with a few notes. V stands for type variables.
any() acts as a Top type, and none() as the emtpy type. The union type is also
of note: in Lindahl et. al., any union of any types is allowed, but since unions
can become large or even infinite within the algorithms, they imposed a fixed
size limit after which the union is widened to a supertype.

One difference between this presentation and Lindahl et. al.’s presentation
is the absence of a T when C type. In Lindahl et. al., they used this type to
force abstractions to actually have an abstraction type without adding in a new
type of constraint. However, since this could have been encoded very simply in
an alternate way, as I’ll do below, without the need to have mutual recursion
between T and C, I decided to omit it. I do not believe this will have significant
impact on the mechanization of this system, since I have already nearly achieved
much of this first mechanization with this change.

2.3 Specification of Typing Judgements and Constraint
Solver

The typing judgements, which slight modification, are taken as follows:

(VAR)
A ∪ {x 7→ τ} ⊢ x : τ, ∅

l ∈ τ
(LIT)

A ⊢ l : τ, ∅

A ⊢ e1 : τ1, C1 . . . en : τn, Cn
(STRUCT)

A ⊢ c(e1, . . . , en) : c(τi, . . . , τn), C1 ∧ . . . ∧ Cn

A ⊢ e1 : τ1, C1 A ∪ {x 7→ τ1} ⊢ e : τ2, C2
(LET)

A ⊢ let x = e1 in e2 : τ2, C1 ∧ C2

4



A ∪ {x 7→ τ} ⊢ f : τ ′, Cf e : τ, Ce
(LETREC)

A ⊢ letrec x = f in e : τ, Cf ∧ Ce ∧ (τ ′ = τ)

A ∪ {x1 7→ τ1, . . . , xn 7→ τn} ⊢ e : τe, C
(ABS)

A ⊢ fun(x1, . . . , xn) → e : (τ1, . . . , τn) → τe, C

A ⊢ e1 : τ1, C1 . . . en : τn, Cn
(APP)

A ⊢ e1(e2, . . . , en) : β, (τ1 = ((α2, . . . , αn) → α) ∧ (β ⊆ α) ∧
(τ2 ⊆ α2) ∧ . . . ∧ (τn ⊆ αn) ∧ C1 ∧ . . . ∧ Cn

A ∪ {x 7→ τp|v ∈ V ar(p1)} ⊢ (p1 when g1) : α1, C
p
1 b1 : β1, C

q
1

...
A ∪ {x 7→ τp|v ∈ V ar(pn)} ⊢ (pn when gn) : αn, C

p
n b1 : β1, C

q
n

A ⊢ e : τ, Ce
(CASE)

A ⊢ case e of (p1 when g1 → b1); . . . ; (pn when gn → bn) end
: β,Ce ∧ (C1 ∨ . . . ∨ Cn) where

Ci = ((β = βi) ∧ (τ = αi) ∧ Cp
i ∧ Cb

i )

The one notable difference between this presentation of the rules and Lin-
dahl et. al.’s is that in ABS, instead of setting the type to τ and then using
the T when C construct to ensure it is an abstraction type, I had the rule
itself encode it. This is a natural change, especially given the context of the
formalization in Coq.

I also added one additional rule: the somewhat vague LIT rule for literals:
literals are of a specific type if they are in the set of that type. This rule has
not been mechanized, and is currently only present in this paper. I believed it
useful to have consideration for literals,

Lindahl et. al. also had one additional rule for patterns, which gets invoked
in the CASE rule.

A ⊢ p : τ, Cp A ⊢ g : true, Cg
(pat)

A ⊢ p when g : τ, Cp ∧ Cg

This has two slight abuses of notations. First, by stating A ⊢ g : true, Cg,
Lindahl et. al. meant that g, the guard, evaluates to true in the given con-
text. This evaluation of guards, however, was not given formally, and assumed
to be possible. In the mechanization that I’m working on, then, I created a
guard_eval function that can evaluate a guard during this type checking pro-
cess. Second, technically, patterns are not expressions: they’re part of the case
expressions. So, the addition of this rules, formally, forces the typing relation to
accept either patterns or expressions rather than just expressions. The simplest
way to get around this is to create a different typing relation only for patterns
that gets invoked when typing case expressions, and this is what I am planning
on doing.

5



The typing relation above generates constraints, but the constraint solving
itself is also important. Here is the algorithm for constraint solving, taken from
Lindahl et. al.

solve(⊥, ) = ⊥

solve(Sol, α ⊆ β) =


Sol when Sol(α) ⊆ Sol(β)

Sol[α 7→ T ] when T = Sol(α) ⊓ Sol(β) ̸= none()

⊥ when T = Sol(α) ⊓ Sol(β)none()

solve(Sol, Conj) =

{
Sol when solve conj(Sol, Conj) = Sol

solve(Sol′, Conj) when Sol′ = solve conj(Sol, Conj) ̸= Sol

solve(Sol,Disj) =

{⊔
Sol′ when Sol′ ̸= ∅

⊥ when Sol′ = ∅
where

{
Sol′ = {S|S ∈ PS, S ̸= ⊥}
PS = {solve(Sol, C)|C ∈ Disj}

solve conj(⊥, ) = ⊥
solve conj(Sol, C1 ∧ . . . Cn) = solve conj(solve(Sol, C1), C2 ∧ . . . Cn)

solve conj(Sol, C) = solve(Sol, C)

This constraint solving algorithm is nearly identical to what is present in
Lindahl et. al., except for one typo fixed within the algorithm. A few details of
note:

• Sol is started as a mapping from all type variables to any().

• To solve a conjunction, solve will be called on that conjunction until
the solution mapping reaches a fixpoint. Lindahl et. al. provided a short
proof of termination of this constraint solving algorithm, which I will not
recount here.

• The ⊓ symbol is the least upper bound of the two types.
⊔

is the greatest
lower bound of all types. When applied to a mapping, it is done pointwise.

2.4 Operational Semantics: Small-Step

The more common type of operational semantics for Erlang that exist in the
literature is small-step. For example, this Lanese et. al. [5] has especially concise
small-step semantics that have been referenced often in the literature. However,
the Coq formalization of Erlang (Bereczky et. al.) does so through a big-step
operational semantics. So, given that the end result will be formalizing success
typing in Coq, it would also be beneficial to do these theorems through a big-step
lens.

Due to my relative inexperience with big-step operational semantics, espe-
cially when it comes to the types of proofs done in CMSC631, I decided to
translate the big-step operational semantics in Bereczky et. al. into a small-
step operational semantics, using Lanese et. al. as a reference for any other

6



technicalities. This introduced issues that will become apparent later, and that
I will discuss once they appear.

Here are the typeset version of these semantics. Lanese et. al. used θ as the
variable for state, but I will use Γ, and will use ↪→ to signify stepping. Note
that v is used for values only.

Γ(x) = v
(S-VAR)

Γ, x ↪→ Γ, v

Γ, ei ↪→ Γ, e′i (S-STRUCT)
Γ, (e1, ..., ei, ..., en) ↪→ Γ, (e1, ..., e

′
i, ..., en)

Γ, ei ↪→ Γ, e′i (S-STRUCT)
Γ, (e1, ..., ei, ..., en) ↪→ Γ, (e1, ..., e

′
i, ..., en)

Γ, e1 ↪→ Γ, e′i (S-LET1)
Γ, let x = e1 in e2 ↪→ Γ, let x = e′1 in e2

(S-LET2)
Γ, let x = v in e2 ↪→ Γ ∪ {x 7→ v}, e2

Γ, f ↪→ Γ, f ′
(S-LETREC1)

Γ, letrec x = f in e ↪→ Γ, let x = f ′ in e

(S-LETREC2)
Γ, letrec x = v in e ↪→ Γ ∪ {x 7→ v}, e

Γ, e1 ↪→ Γ, e′1
(S-APP1)

Γ, e1(e2, . . . , en) ↪→ Γ, e′1(e2, . . . , en)

Γ, ei ↪→ Γ, e′i (S-APP2)
Γ, v(e1, ..., ei, ..., en) ↪→ Γ, v(e1, ..., ei, ..., en)

v = fun(x1, . . . , xn) → e
(S-APP3)

Γ, v(v1, . . . , vn) ↪→ Γ ∪ {x1 7→ v1, . . . , xn 7→ vn}, e

Γ, e ↪→ Γ, e′
(S-CASE1)

Γ, case e of (p1 when g1 → b1); . . . ; (pn when gn → bn) end
↪→ Γ, case e′ of (p1 when g1 → b1); . . . ; (pn when gn → bn) end

A,¬match(v, p1) ∨ guard-eval(g1) = false
...

A,¬match(v, pi−1) ∨ guard-eval(gi−1) = false
A,match(v, p1) ∧ guard-eval(g1) = true

(S-CASE2)
Γ, case v of (p1 when g1 → b1); . . . ; (pn when gn → bn) end

↪→ Γ ∪match-context-extend(v, p1), bi

Note for application: Erlang uses eager evaluation. Therefore it makes sense
to say that substitution only happens when everything becomes a value.

7



The other rule worth discussing is S-CASE2. What this rule means intu-
itively is that once the case expression is matching on a value, it finds the
first branch for which the value satisfies the guard (which, by Lindahl et. al.’s
definition, means the guard’s free variables can be substituted in order to be
syntactically identical to v, and the guard itself evaluates to true), and enters
it, setting the free variables in the pattern to the values computed for it to
match. Lindahl et. al. did not precisely write out the functions for matching
and evaluating the guard, so I followed suit.

However, this entire definition relies on values. So, what are they defined
as?

2.5 Values

Lanese et. al., while referencing values in their small-step semantics, did not
have a definition of what they defined to be values. In Bereczky et. al., their
big-step operational semantics actually evaluated expressions directly to values,
but their values were an entirely separate category from syntax. Some values
were not expressions at all, namely closures.

So, given that I will mostly be working with a small-step semantics for the
purposes of the rest of this paper, I will define values in a way that is most
logical for the fragment of the language that I have described.

Values are either
• literals,
• struct composed of values, or
• any abstraction.

Saying any abstraction is a value is the same choice made in Programming
Language Foundations, what CMSC631 covered. It is also similar to the choice
Bereczky et. al. made, which is that any closure is a value. This choice will
cause a problem down the line, which I will discuss when it comes up.

3 Informal Proof of Reverse Progress

The typical progress property states that if a term is well-typed, then it is either
a value or can step. This is guaranteeing that well-typed terms do not crash.
However, this is necessarily untrue in success typing: well-typed terms can, and
often do, get stuck and crash. I propose a modified progress theorem for success
typing: if a term is ill-typed, then it can either take a step or is stuck. The proof
for this modified progress property will proceed by induction over the typing
derivation rules.

Proof. Take an ill-typed term: A ⊢ e : τ, C where given Sol ⊨ C and
Sol(τ) = none(). By induction on the typing derivation, we aim to prove that
e is either stuck or can step. It is equivalent, as well, to show that e can never
be a value, since all expressions are either values, stuck, or can step.

• VAR: Since a variable is never a value, we have proven the goal. In fact,
most of the cases could, technically, proceed in such a straightforward

8



fashion. However, as this is not particularly illuminating, I will endeavour
to describe more of the logic of why a term will either be stuck or can
step, rather than just stating that it is not a value. This is both for a
deeper understanding of the system and in case the definitions of “value”
changes, which is likely to occur.

The variable typing judgement does not interface with the constraint solv-
ing algorithm. So, if a variable is ill-typed, that simply means it must not
be within the context, therefore not within the environment, meaning it’s
a free variable. Since in order to step a variable, you must find it in
the environment, a variable being ill-typed means stepping is impossible.
Therefore, an ill-typed variable is guaranteed to be stuck.

• LITERAL: All literals have concrete types that are not none(). If you do
claim to have a literal of type none(), then you have essentially populated
the empty type, which is nonsense. So, this segment of the proof would
be finished by inversion.

• STRUCT: As noted previously, for Sol to give back none() for any type
variable, it must be the empty mapping ⊥ itself. Since the top-level con-
straint for the struct rule is conjunction, the solve_conj call must have
returned ⊥, which means that at least one of Ci returned ⊥ given the cur-
rent state of Sol at the time. This then means that ei must be ill-typed
given the context, and by the inductive hypothesis, this means that ei
must be either be able to step or is stuck. If ei can step, then the whole
e can step, and our goal is proven. If ei is stuck, then even if all the rest
of the ej ’s are values, then entirety of e will either be stuck or can step,
proving the goal.

Note that there is one caveat here that I have glanced over: we are, by the
process of solve_conj, guaranteed that at least one Ci forced a return of
⊥ given the current state of Sol. However, we are not actually guaranteed
that ei on its own is ill-typed. Perhaps, for example, all ej ’s are well
typed alone, but when we try to solve the constraints for all of them
simultaneously, that’s when we run into issues, and Ci is simply the first
place where all of the constraints clash against each other.

I’m still relatively certain that this means that e will not be able to step
down to a value. However, I have not been able to construct an example
of a struct that is ill-typed but all components are well-typed to ground
this intuition to reality. As well, this weakness is present in most of the
following cases as well, and I’m unsure how things will work out once
formalization begins in earnest.

• LET: Similarly to VAR, this segment of the proof could be concluded
simply by stating a let expression can never be a value. However, since
this is not illuminating, here is a bit more of an exploration of the case of
an ill-typed let.

9



If you have an ill-typed let expression, then that means either C1 or C2

triggered solve_conj to return ⊥. If C1 did, then that means that e1 is
ill-typed. By the inductive hypothesis, then, e1 is either stuck or can step.
If it is stuck, then the entirety of e is stuck, proving this case; otherwise
if it can step, then this case is proven as well. If C2 did, then that means
the body of the let expression, with the context extended with the type
of e1, is ill-typed, which means that the body will get somehow stuck.

• LETREC proceeds identically to LET due to the similarity in stepping,
despite the differences in typing. The one note, though, is that a letrec

statement can also become ill-typed from it being impossible to assign
the recursive f a type. Lindahl et. al. described a separate algorithm to
assign types to recursive terms, but did not specify it precisely. Figuring
out the algorithm they described implicitly and its details is an important
next step.

• ABS: discussion after this proof.

• APP: As usual, more discussion of this case despite not being required.

An application can step in two ways: either through the stepping of each
individual component (the abstraction or any of the inputs) or through
substitution of e1’s body with the values of the

If an application is ill-typed, that means something in the long string of
conjunction forced a return of ⊥ from the constraint solving algorithm. If
the first term, the one requiring e1 to be an abstraction, is the one that
triggered it, then that means that e1 is not an abstraction, and therefore
even if e1 is a value, the entirety of e will not be able to do the substitution
step, making e stuck.

If any of the other Ci’s is what forced the return of of ⊥, then that means
either (a) one of the ei’s is ill-typed, with the same caveat as in STRUCT
or (b) one of the ei’s type is not a subtype of the input type. If in case
(a), then the reduction of each input will not succeed, and the entire e will
not be able to enter the substitution step, and so get stuck. If in case (b),
then the substitution step will occur, and some operation will get stuck
later in computation.

The same caveat as in STRUCT applies here: perhaps it is the interaction
between the many Cj that force a ⊥ to be triggered. As before, I have
not been able to construct an example of such a thing occurring, but will
need to investigate this much closer.

• CASE: A case expression can step in one of two ways: either the expression
being examined (e1 for this discussion) steps, or, once it is a value, a
matching branch is found and stepped to with substitutions of variables
in p.

If a case statement is ill-typed, that means either Ce or C1 ∨ . . . Cn forced
solve_conj to return ⊥. If Ce returned ⊥, that means that e1 is ill-typed,

10



and by the inductive hypothesis, e1 can either step or is stuck. If e1 can
step, the whole of e can step. If e1 is stuck, then the whole of e1 is stuck,
given that entering any branch requires e1 to be a value.

If C1∨ . . .∨Cn returned ⊥, that means that every Ci returned ⊥, meaning
that every conjunction Ci = ((β = βi) ∧ (τ = αi) ∧ Cp

i ∧ Cb
i ) had at least

one condition that triggered unsatisfiability. This means that for each
guard and branch, either:

- The pattern and guard cannot be satisfied given the input τ , or

- The branch is ill-typed.

This then means that no matter which branch execution will try to follow,
the program will either get stuck from not matching a guard or from the
branch content itself being ill-typed, and by inductive hypothesis, that
branch will get stuck.

This part of the informal proof especially illuminates what success typing
has “ill-typed” mean: there is no way at all to succeed given something
ill-typed.

3.1 Discussion On Abstraction

At this point, the elephant in the room is the ABS case. Given how I defined
values above, this proof is actually impossible to complete. This is simply
because given any abstraction, it is always a value. So, under this configuration,
reverse progress is simply false. And this does make sense, in a way: in Erlang,
you could have an ill-typed function somewhere in your context, but if you
never call it, your program will never get stuck. Your program as a whole is
not ill-typed. Even if you entire program is one ill-typed function, nothing will
actually crash.

However, we would still like for reverse progress to hold in some form, given
how it does a good job at describing the way success typing operates and its
philosophy. So, there are a couple of ways that I have considered to get around
this:

1. The reverse progress statement could be modified to avoid this issue en-
tirely: simply consider terms that are not abstractions. This will not
impact the proof in any way: despite no longer having some sort of in-
ductive hypothesis on any abstraction in any of the steps, given how most
cases could have been solved by just showing they could never be a value,
this will not cause any issues. I believe that, while this may feel like a
tacky workaround, it does actually accurately reflect the way that success
typing interacts with evaluation of Erlang programs.

2. If we switched to using the big-step operational semantics, with values
being considered an entirely separate category of items, this issue could
be avoided. Specifically, under the big-step operational semantics, ab-
stractions are not values, and only closures are. Closures are created by

11



stepping from an abstractions. So, if the big-step relation required that
the body of the abstraction is well typed to step to a closure, then ill-typed
abstractions will not step and not be values, therefore proving this leg of
the reverse progress proof. Of course, using big-step operational semantics
would introduce a load of other problems, but would also solve the need
to define the small-step operations myself, as the big-step semantics have
already been formally defined in Coq.

4 References

1. Erlang. “Erlang: Practical functional programming for a parallel world.”
Retrieved November 20, 2023. https://www.erlang.org/

2. S. O. Nyström. “A soft-typing system for Erlang.” Proceedings of ACM
SIGPLAN Erlang Workshop, pages 56-71. ACM 2003.

3. Lindahl, T. and Sagonas, K. “Practical Type Inference Based on Success
Typings.” ACM 2006.

4. Bereczky, P., Horpácsi, D., and Thompson, S. “A Proof Assistant Based
Formalisation of Core Erlang.” Trends in Functional Programming. TFP
2020.

5. Lanese, I., Sangiorgi, D., Zavattaro, G. “Playing with Bisimulation in
Erlang. Models.” Languages, and Tools for Concurrent and Distributed
Programming, 2019.

12


